Oxford Cambridge and RSA

GCE

Chemistry A

Unit F324: Rings, Polymers and Analysis
Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in Scoris.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
\mathbf{E}	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\boldsymbol{A}	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\boldsymbol{S}	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
)	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

1(c)(ii), 2(a)(i), 2(d)(ii), 3(b) and 4(d)

Question			Answer	Mark	Guidance
1	(a)		(Relative) solubility (in stationary phase) \checkmark	1	ALLOW how well the compound dissolves IGNORE retention time AND partition DO NOT ALLOW adsorption OR absorption
	(b)	(i)	Compound B AND $\mathrm{M}^{+} /$molecular ion peak $($at $\mathrm{m} / \mathrm{z})=124$	1	ALLOW Mr = 124 IGNORE compound B because $\mathrm{m} / \mathrm{z}=124$ ALLOW C $\mathrm{H}_{8} \mathrm{O}_{2}{ }^{+}=124 \mathrm{OR} \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}=124$ ALLOW peak at ($\mathrm{m} / \mathrm{z}=$) 109 due to $\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{O}^{+}$ ALLOW peak at ($\mathrm{m} / \mathrm{z}=$) 109 due to loss of CH_{3} IGNORE reference to other peaks in the spectrum
		(ii)	Compound (B) is less soluble in the stationary phase/liquid	1	ORA Answer refers to the first compound to emerge from the column ALLOW compound (B) is more soluble in mobile phase/gas ALLOW compound interacts less with stationary phase/liquid OR compound interacts more with mobile phase/gas IGNORE compound adsorbs less IGNORE compound is not very soluble (comparison needed) IGNORE volatility OR reactivity

Ques		Answer	Mark	Guidance
(c)	(i)	reagent $=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ AND $\mathrm{H}_{2} \mathrm{SO}_{4}$ compound $\mathrm{C}=$	3	ALLOW acidified dichromate ALLOW $\mathrm{H}^{+} /$any acid IGNORE concentration of acid ALLOW $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ I(potassium OR sodium) dichromate((VI)) ALLOW acidified MnO_{4}^{-} ALLOW Tollens' reagent/ammoniacal silver nitrate IGNORE conditions ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW ECF from incorrect compound C Check positions of OH groups ALLOW esterification of phenol group

Question

Question			Answer	Mark	Guidance
2	(a)	(i)	M1 p-orbitals overlap (to form pi/m-bonds) M2 m-bond(s) are delocalised in structure B M3 π-bonds are localised/between two carbons in structure A M4 AND Diagrams show correct position of delocalised and localised π-bonds/ π-electrons OR correct position of p-orbital overlap QWC requires delocalised/delocalized spelled correctly and used in correct context	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE p-orbitals overlap to form sigma bonds ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or m-bonds) ALLOW $\boldsymbol{\pi}$-electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π-bonds/ π-electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW $\mathrm{C}=\mathrm{C}$ in this diagram Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram IGNORE charge density DO NOT ALLOW electronegativity Structures do not need to be labelled A and B if the description matches the structure

Question		Answer	Mark	Guidance
	(ii)	structure B/delocalised structure is (more) stable structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) $357\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	ALLOW structure B is low in energy IGNORE structure \mathbf{B} is less reactive ALLOW enthalpy change/hydrogenation for benzene is less (negative) than $3 \times(-) 119$ IGNORE more positive than (-)357 $\mathrm{kJ} \mathrm{mol}^{-1}$ ALLOW enthalpy change is less than $3 x$ enthalpy change for cyclohexene ALLOW structure B is more stable by $149 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks) DO NOT ALLOW more/less energy needed for the reaction Answer must refer to data given in the question and must be a comparison IGNORE $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$ No marks can be awarded if structure \mathbf{A} is selected
(b)		curly arrow from $\mathrm{C}-\mathrm{N}$ bond to N^{+} curly arrow from lone pair on fluoride ion to positive charge on benzene ring	2	First curly arrow must come from bond not from C atom ALLOW first curly arrow to nitrogen atom OR to positive charge on nitrogen atom ALLOW second curly arrow from negative charge on fluoride ion ALLOW second curly arrow to carbon atom with positive charge

Question		Answer	Mark	Guidance
(c)		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}+\mathrm{FeBr}_{3} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+}+\mathrm{FeBr}_{4}^{-}$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW positive charge anywhere on the electrophile IGNORE AICl ${ }_{3} \mathrm{OR} \mathrm{AlBr}_{3}$
(d)	(i)	First reactant $=\mathrm{HNO}_{2} \checkmark$ Second reactant $=$ Third reactant $=$	3	ALLOW NaNO $2+\mathrm{HCl}$ OR $\mathrm{HNO}_{2}+\mathrm{HCl}$ IGNORE conditions/concentration ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW

Question	Answer	Mark	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=1.35(\mathrm{~g})$ award 3 marks IF answer $=0.54(\mathrm{~g})$ award 2 marks (no scale-up) IF answer $=0.216(\mathrm{~g})$ award 2 marks (incorrect scale-up) $n($ compound D$)=1.73 / 346=0.00500 \mathrm{~mol}$ $n(1,3$-diaminobenzene) required $=100 / 40 \times 0.005$ $=0.0125 \mathrm{~mol}$ Molar mass of 1,3-diaminobenzene $=108\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND Mass of 1,3-diaminobenzene $=(108)(0.0125)=1.35 \mathrm{~g} \quad \checkmark$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass Alternative 1 n (compound D) $=1.73 / 346=0.00500 \mathrm{~mol}$ Molar mass of 1,3-diaminobenzene $=108\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND Mass of 1,3-diaminobenzene $=(0.00500)(108)=0.540 \mathrm{~g}$ Mass of 1,3 -diaminobenzene required $=(0.540)(100 / 40)=$ 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives $108 / 364 \times 1.73=0.54 \mathrm{~g}$ $0.54 / 40 \times 100=1.35 \mathrm{~g}$
(iii)	(compound D has) two chiral centres Four optical isomers exist (Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR chiral catalysts OR use natural chiral molecules OR single isomers (as starting materials)	3	ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres ALLOW four enantiomers OR two pairs of enantiomers INDEPENDENT MARK ALLOW biological catalysts ALLOW chiral transition metal complex/catalyst OR stereoselective transition metal complex/catalyst ALLOW 'chiral pool'/chiral auxiliary
	Total	18	

Question			Answer	Mark	Guidance
3	(a)	(i)	 $-\mathrm{NH}_{3}{ }^{+}$in second product	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW $-\mathrm{O}^{-} \mathrm{Na}^{+} \mathrm{OR}-\mathrm{O}^{-}$(cation not required) DO NOT ALLOW -O—Na (covalent bond) DO NOT ALLOW -O (without the sodium) ALLOW delocalised carboxylate
		(ii)	perfume/fragrance/flavouring \checkmark	1	IGNORE solvent OR food additive
		(iii)	Reaction 3: (hot) ethanolic ammonia Reaction 4: oxidation Reaction 5: hydrolysis	3	ALLOW NH ${ }_{3}$ (dissolved) in ethanol IGNORE other conditions ALLOW oxidisation/oxidised DO NOT ALLOW redox ALLOW nucleophilic addition-elimination DO NOT ALLOW nucleophilic substitution IGNORE acid/base

Question		Answer	Mark	Guidance
		M5 Compound G OR Is an addition polymer M6 Compound \mathbf{H} OR is a condensation polymer \checkmark		ALLOW alkene forms addition polymer/polymer with same empirical formula as monomer ALLOW equation for reaction n ALLOW amino acid forms condensation polymer OR (molecules of) compound \mathbf{F} join/bond/add/react/form polymer and water/small molecule ALLOW equation for reaction
(c)	(i)		1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

Question		Answer		Mark	Guidance
(d)	(i)	Ester AND amide \checkmark		1	ALLOW peptide for amide
	(ii)			2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Functional groups do not need to be fully displayed ALLOW structures as shown; the O-H bond and the N-H bonds in the functional groups do not need to be displayed DO NOT ALLOW -COOH ALLOW Penalise incorrect connectivity to OH once in this question
	(iii)	(The molecule/amide/ester) can be hydrolysed	\checkmark	1	ALLOW (the molecule/amide/ester) can form hydrogen/Hbonds with water IGNORE acid/base
			Total	20	

Question	Answer	Mark	Guidance
	OR Relative peak area of 1 $=\mathrm{N}-\mathrm{H}$ M3 Peak at 2.3/2.4 OR Relative peak area of 2 OR Quartet = OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ M4 Peak at 0.7/0.8 OR Triplet $=\mathrm{R}-\mathrm{CH} \text { OR } \mathrm{R}-\mathrm{CH}_{3}$ M5 Triplet (at $\delta 0.7$) AND quartet (at $\delta 2.3$) $=\mathrm{CH}_{2} \mathrm{CH}_{3}$ OR triplet at (δ) 0.7 shows (C with) 2 adjacent $\mathrm{Hs} /$ protons $=\mathrm{CH}_{2} \mathrm{CH}_{3}$ OR quartet (at $\delta 2.3$) shows (C with) 3 adjacent $\mathrm{Hs} /$ protons $=\mathrm{CH}_{2} \mathrm{CH}_{3}$		IGNORE O-H , CONH AND C=CH ALLOW quadruplet IGNORE CHC=O AND HC-N DO NOT ALLOW triplet $=\mathrm{CH}_{3} \mathrm{OR} \mathrm{CH}_{2} \mathrm{CH}_{3}$ This also scores M4 if triplet is linked to $\mathrm{R}-\mathrm{CH}_{3}$ ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2}$ described as $\mathrm{R}-\mathrm{CH}_{3}$ and 2 adjacent H OR $-\mathrm{CH}_{2}$ - and 3 adjacent H The information can be presented on the spectrum or in a table.

Question

Question	Answer	Mark	Guidance
	Identification of \mathbf{R}^{1} and \mathbf{R}^{2} (2 marks) Orange precipitate L Correct structure scores 2 marks \mathbf{R}^{1} or $\mathbf{R}^{\mathbf{2}}=-\mathrm{CH}_{3}$ \mathbf{R}^{1} or $\mathbf{R}^{2}=$		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Marks are for structure of R^{1} and R^{2} IGNORE errors in the rest of the structure ALLOW 1 mark for CH_{3} and $\mathrm{CH}_{3} \mathrm{CH}_{2}$ swapped, i.e. the following structure ALLOW $\mathrm{H}_{3} \mathrm{C}-\mathrm{C}=\mathrm{N}$ - MUST BE 1,4-disubstituted (14 carbon environments in the ${ }^{13} \mathrm{C}$ NMR spectrum

Question	Answer	Mark	Guidance
(e)	Carbonyl compound \mathbf{K}	1	ALLOW ECF from incorrect compound \mathbf{L} Must be a correct carbonyl structure
	Total	12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
\section*{OCR Customer Contact Centre}
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

