

GCE

Chemistry A

Unit F324: Rings, Polymers and Analysis

Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Annotations available in Scoris.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct response

F324 Mark Scheme June 2015

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument
1	

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

1(c)(ii), 2(a)(i), 2(d)(ii), 3(b) and 4(d)

	Questi	ion	Answer	Mark	Guidance
1	(a)		(Relative) solubility (in stationary phase) ✓	1	ALLOW how well the compound dissolves
					IGNORE retention time AND partition
					DO NOT ALLOW adsorption OR absorption
	(b)	(i)	Compound B	1	ALLOW Mr = 124
			AND $M^{+}/\text{molecular ion peak (at } m/z) = 124$		IGNORE compound B because <i>m</i> / <i>z</i> = 124
			in , merecular ien peark (at ////2)		ALLOW $C_7H_8O_2^+ = 124$ OR $C_7H_8O_2 = 124$
					ALLOW peak at (m/z =) 109 due to HOC ₆ H ₄ O ⁺
					ALLOW peak at (m/z =) 109 due to loss of CH ₃
					IGNORE reference to other peaks in the spectrum
		(ii)	Compound (B) is less soluble in the stationary phase/ liquid	1	ORA
					Answer refers to the first compound to emerge from the column
					ALLOW compound (B) is more soluble in mobile phase/gas
					ALLOW compound interacts less with stationary phase/liquid
					OR compound interacts more with mobile phase/gas
					IGNORE compound adsorbs less
					IGNORE compound is not very soluble (comparison needed)
					IGNORE volatility OR reactivity

Question	Answer	Mark	Guidance
(c) (i)	reagent = $K_2Cr_2O_7$ AND H_2SO_4	3	ALLOW acidified dichromate
			ALLOW H⁺/any acid
			IGNORE concentration of acid
			ALLOW Na ₂ Cr ₂ O ₇ /Cr ₂ O ₇ ²⁻ /(potassium OR sodium) dichromate((VI))
			ALLOW acidified MnO ₄
			ALLOW Tollens' reagent/ammoniacal silver nitrate
			IGNORE conditions
	compound C = CH ₂ OH OH ester = OH OH OH OH OH		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW ECF from incorrect compound C Check positions of OH groups ALLOW esterification of phenol group CH ₂ OH

Question	Answer	Mark	Guidance
(ii)	curly arrow from H^- to $C^{\delta+}$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC curly arrow must come from lone pair on H or negative charge on H
	dipole AND curly arrow from C=O bond to O ✓		curly arrow must come from the bond, not the carbon atom
	correct intermediate AND curly arrow to H ⁺ ✓		curly arrow must come from lone pair on O or negative charge on O and go to H or positive charge on H
			Where circles have been placed round charges, this is for clarity only and does not indicate a requirement
	δ-O T H H TO C T H T		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	OH OH		ALLOW for second stage
	CH ₂ OH		
	→ OH		ОН
			IF H ₂ O is used it MUST show the curly arrow from the negative charge or lone pair on the oxygen atom of the intermediate to H in H ₂ O AND from the O—H bond to the O in H ₂ O. Dipole not required on water molecule
			Penalise missing –OH on intermediate only
			IGNORE product – already given credit in part (i)

F324 Mark Scheme June 2015

Qı	uestion	Answer	Mark	Guidance
	(d)	OCH ₃ OH + 2 Br ₂	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstitution at any positions on benzene ring
		Total	10	

	Questi	on	Answer	Mark	Guidance
2	(a)	(i)	M1	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			p-orbitals overlap (to form pi/π-bonds) ✓		IGNORE p-orbitals overlap to form sigma bonds
			M2 π-bond(s) are <u>delocalised</u> in structure B ✓		ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or π -bonds)
		π-bonds are localised/between two carbons in structure A IC IC IC IC IC IC IC IC IC I	ALLOW π-electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π -bonds/ π -electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram		
			AND AND		Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram
			Diagrams show correct position of delocalised and		IGNORE charge density
			localised π-bonds/π-electrons		DO NOT ALLOW electronegativity
		OR correct position of p-orbital overlap ✓ ✓ QWC		Structures do not need to be labelled A and B if the description matches the structure	
			requires delocalised/delocalized spelled correctly and used in correct context		

Q	uestion	Answer	Mark	Guidance
	(ii)	structure B/delocalised structure is (more) stable	2	ALLOW structure B is low in energy
		√		IGNORE structure B is less reactive
		structure B is a better because (enthalpy change of hydrogenation for benzene is) less		ALLOW enthalpy change/hydrogenation for benzene is less (negative) than 3 × (–)119
		(exothermic) than (-) 357 (kJ mol ⁻¹)		IGNORE more positive than (-)357 kJ mol ⁻¹
		✓		ALLOW enthalpy change is less than 3x enthalpy change for cyclohexene
				ALLOW structure B is more stable by 149 kJ mol ⁻¹ (2 marks)
				DO NOT ALLOW more/less energy needed for the reaction
				Answer must refer to data given in the question and must be a comparison
				IGNORE 360 kJ mol ⁻¹
				No marks can be awarded if structure A is selected
	(b)		2	
				First curly arrow must come from bond not from C atom
		curly arrow from C–N bond to N ⁺ ✓		ALLOW first curly arrow to nitrogen atom OR to positive charge on nitrogen atom
				ALLOW second curly arrow from negative charge on fluoride ion
		curly arrow from lone pair on fluoride ion to positive charge on benzene ring		ALLOW second curly arrow to carbon atom with positive charge

Questi	ion	Answer	Mark	Guidance
(c)		$(CH_3)_2CHBr + FeBr_3 \longrightarrow (CH_3)_2CH^+ + FeBr_4^-$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
				ALLOW positive charge anywhere on the electrophile
				IGNORE AICI ₃ OR AIBr ₃
(d)	(i)	First reactant = HNO₂ ✓	3	ALLOW NaNO ₂ + HCl OR HNO ₂ + HCl
				IGNORE conditions/concentration
		Second reactant =		
		Br NH ₂		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
		✓		
		Third reactant =		ALLOW
				CI NH ₂
		HO NH ₂		ОН
		OH ✓		

Question	Answer	Mark	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.35 (g) award 3 marks IF answer = 0.54 (g) award 2 marks (no scale-up) IF answer = 0.216 (g) award 2 marks (incorrect scale-up)	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible
	$n(\text{compound D}) = 1.73/346 = 0.00500 \text{ mol}$ \checkmark $n(1,3\text{-diaminobenzene}) \text{ required} = 100/40 \times 0.005$ $= 0.0125 \text{ mol}$ \checkmark Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = $(108)(0.0125) = 1.35 \text{ g}$ \checkmark		Alternative 1 n(compound D) = 1.73/346 = 0.00500 mol Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = (0.00500)(108) = 0.540 g Mass of 1,3-diaminobenzene required = (0.540)(100/40) = 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives 108/364 x 1.73 = 0.54 g 0.54/40 x100 = 1.35 g
(iii)	(compound D has) two chiral centres ✓	3	ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres
	Four optical isomers exist ✓		ALLOW four enantiomers OR two pairs of enantiomers
	(Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR chiral catalysts OR use natural chiral molecules OR single isomers (as starting materials)		INDEPENDENT MARK ALLOW biological catalysts ALLOW chiral transition metal complex/catalyst OR stereoselective transition metal complex/catalyst ALLOW 'chiral pool'/chiral auxiliary
	Total	18	

C	uesti	on	Answer	Mark	Guidance
3	(a)	(i)	H H O I I // HO-C-C-C I I NH2 ONa	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
			I I \ H NH ₂ ONa		ALLOW —O ⁻ Na ⁺ OR —O ⁻ (cation not required)
			√ · · · · · · · · · · · · · · · · · · ·		DO NOT ALLOW —O—Na (covalent bond)
					DO NOT ALLOW -O (without the sodium)
					ALLOW delocalised carboxylate
			HO - C - C - C - C - C - C - C - C - C -		<u> </u>
			—NH ₃ ⁺ in second product ✓		
		(ii)	perfume/fragrance/flavouring ✓	1	IGNORE solvent OR food additive
		(iii)	Reaction 3: (hot) ethanolic ammonia ✓	3	ALLOW NH ₃ (dissolved) in ethanol
					IGNORE other conditions
			Reaction 4: oxidation ✓		ALLOW oxidisation/oxidised DO NOT ALLOW redox
			Reaction 5: hydrolysis ✓		ALLOW nucleophilic addition-elimination
					DO NOT ALLOW nucleophilic substitution
					IGNORE acid/base

Question	Answer	Mark	Guidance
(b)	M1 Compound E	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	$H_2C \longrightarrow C \longrightarrow CHO$ NH_2		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	$H_2C = C - C + CHO$		Labels are not required for compound E, F, G or H
	NH ₂		IGNORE labels for M1, M2, M3 and M4
			CH₂=CH must be shown in E
	M2 Compound F		ALLOW C ₂ H ₃ OR CHCH ₂ for CH=CH ₂ in F
	$H_2C \longrightarrow C \longrightarrow COOH$ NH_2		ALLOW ECF from error in structure of aldehyde E
			ALLOW multiple repeat units but must be full repeat units
	M3 Compound G		ALLOW end bonds shown as
	[H H]		DO NOT ALLOW if structures have no end bonds
	$\begin{array}{c c} - & c \\ \hline & \\ & \\ & H \\ \hline & CHNH_2 \\ \end{array}$		IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain
			IGNORE n
	ĊООН ✓		ALLOW C ₂ H ₄ NO ₂ for CH(NH ₂)COOH in polymer G
			ALLOW C ₂ H ₃ OR CHCH ₂ for CH=CH ₂ in polymer H
	M4 Compound H		ALLOW ECF from NH ₂ CH ₂ CH=CHCOOH for the formation of compound G or compound H

Question	Answer	Mark	Guidance
	M5 Compound G OR		ALLOW alkene forms addition polymer/polymer with same empirical formula as monomer ALLOW equation for reaction $ \begin{array}{cccccccccccccccccccccccccccccccccc$
	M6 Compound H OR		ALLOW amino acid forms condensation polymer OR (molecules of) compound F join/bond/add/react/form polymer and water/small molecule ALLOW equation for reaction n H ₂ C = C - COOH
(c) (i)	H H H H O H—N—C—C—C—OH HOOC H H	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

Question	Answer	Mark	Guidance
(ii)	H ₂ COOH	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	H ₂ C NH		ALLOW a cyclic amide with a 3 membered ring
	HOOCH ₂ CH ₂ C H C NH HN C H CH ₂ CH ₂ COOH		ALLOW COOH CH2CH2CH NH HN CHCH2CH2 COOH CHCH2CH2 CHCH2CH2

Q	Question		Answer	Mark	Guidance
	(d)	(i)	Ester AND amide ✓	1	ALLOW peptide for amide
		(ii)	0 0	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
					Functional groups do not need to be fully displayed
	HO (CH ₂) ₄ — C' OH ✓		ALLOW structures as shown; the O-H bond and the N-H bonds in the functional groups do not need to be displayed		
			DO NOT ALLOW -COOH		
			ALLOW		
			H_2N CH_2OH CH_3		O H H H H O C C C C C C C C C C C C C C
					Penalise incorrect connectivity to OH once in this question
		(iii)	(The molecule/amide/ester) can be <u>hydrolysed</u> ✓	1	ALLOW (the molecule/amide/ester) can form hydrogen/H-bonds with water IGNORE acid/base
			Total	20	

C	uesti	on	Answer	Mark	Guidance
4	(a)		magnetic resonance imaging/providing diagnostic information/body scanners. ✓	1	ALLOW MRI/scanning internal structures e.g. brain ALLOW detection of tumours/cancer/haemorrhage/aneurysm IGNORE reference to drugs, chemicals or functional groups IGNORE analysis of blood DO NOT ALLOW CT scan/CAT scan
	(b)	(i)	Radio (waves) ✓	1	ALLOW a value in the range 60 – 900 MHz
		(ii)	The solvent does not have any hydrogen/H/protons ✓	1	ALLOW to prevent (¹H nuclei from) the solvent from interfering with the NMR spectrum ALLOW does not show on the spectrum ALLOW no peak/signal (from solvent) IGNORE volatility
4	(c)		14 ✓	1	
	(d)		NMR analysis (5 marks) M1 Peaks between (δ) 7.1 and 7.5 (ppm) OR Relative peak area of 7 OR Multiplet = M2 Peak at 5.2/5.3	7	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE analysis of 13 C spectrum Each peak can be identified from its δ value \pm 0.2 ppm ALLOW (seven) benzene ring protons OR aromatic protons DO NOT ALLOW benzene ring without reference to protons ALLOW C ₆ H ₆ IGNORE

Question	Answer	Mark	Guidance
	OR Relative peak area of 1 = N-H ✓		IGNORE O-H , CONH AND C=CH
	M3 Peak at 2.3/2.4 OR Relative peak area of 2 OR Quartet = OR C ₆ H ₅ CH ₂ ✓		ALLOW quadruplet IGNORE CHC=O AND HC-N
	M4 Peak at 0.7/0.8 OR Triplet = R-CH OR R-CH ₃ ✓		DO NOT ALLOW triplet = CH ₃ OR CH ₂ CH ₃
	M5 Triplet (at δ 0.7) AND quartet (at δ 2.3) = CH ₂ CH ₃ OR triplet at (δ) 0.7 shows (C with) 2 adjacent Hs/protons = CH ₂ CH ₃ OR quartet (at δ 2.3) shows (C with) 3 adjacent Hs/protons = CH ₂ CH ₃		This also scores $M4$ if triplet is linked to R-CH ₃

C	uestion	Answer	Mark		Gı	ıidance	
				7 10 8		5 4 3 chemical shift, 8/ppm	HC-C=N- R-CH 3 2 1 0
				Chemical shift/ppm	Relative peak area	Splitting pattern	Type of proton
				7.1 – 7.5	7	Multiplet	O H
				5.3	1	Singlet	N-H
				2.3/2.4	2	Quartet	СН
				1.7/1.8	3	Singlet	HC-C=N-
				0.7/0.8	3	triplet	R-CH/R-CH₃
				IGNORE peak information is (H ₃ C-C=N-scotosee below)	in the range 1 given in the qu ores one mark	.6–2.2 = HC–C estion. for the identific	C=N– because this ation of R ¹ or R ²

Question	Answer	Mark	Guidance
	Identification of R ¹ and R ² (2 marks) Orange precipitate L		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	Correct structure scores 2 marks		Marks are for structure of R ¹ and R ²
	O₂N		IGNORE errors in the rest of the structure
	H_3C $C=N$ NO_2 CH_3CH_2		ALLOW 1 mark for CH ₃ and CH ₃ CH ₂ swapped, i.e. the following structure O ₂ N CH ₃ CH ₂ NO ₂ NO ₂
	R^1 or $R^2 = -CH_3$ \checkmark		ALLOW H ₃ C-C=N-
	R^1 or $R^2 =$ CH_3CH_2		MUST BE 1,4-disubstituted (14 carbon environments in the ¹³ C NMR spectrum

Question	Answer	Mark	Guidance
(e)	Carbonyl compound K	1	ALLOW ECF from incorrect compound L
	H ₃ C C=O CH ₃ CH ₂		Must be a correct carbonyl structure
	Total	12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552

Facsimile: 01223 552553

